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1 A)PLT and (o,d)-codes

1) Skew polynomial rings and skew polynomial maps.

A aring, o € End(A), § a o-derivation:
§ € End(A,+) d(ab) = o(a)d(b) + 6(a)b,Va,b € A.

R:=Alt;0,0) ={f(t) = 1" ja;it' | a; € A}.
The product is based on:

Va € A, ta=o(a)t+d(a)

Examples 1.1. 1) If 0 = id. and § = 0 we get the usual
polynomial ring Alt].

2) R = Clt; o] where ¢ is the complex conjugation. If
x € C is such that o(z)x = 1 then
t? —1=(t+o(x)(t—x).
On the other hand ¢ + 1 is central and irreducible in R.

3) R = Q(x)[t;id., L]. tx — xt = 1; for any
=+ (x+a)t—(z+a) ') forany a € Q.

Definition 1.2.a € A, f(t) € R = Al[t; 0, 9] there exist
q(t) € R,c € A such that f(t) = q(t)(t —a) + c.

The (right) evaluation of f(t) at a is the element ¢ above. We
write ¢ = f(a). We say a is a (right) root of f(¢) if f(a) = 0.
This defines the (o, d)-polynomial maps.
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Examples: 1) For a € A, t*(a) = o(a)a + 6(a).
2) It 6 =0, t"(a) = 0" (a) - o(a)a.

2) (0, 8)-PLT

Definition 1.3. V' be a left A-module. T": V,+ — V., +
such that:

T(av) =0c(a)T(v)+d(a)v Yv eV, Vae A
T is called a (o, d) pseudo-linear map.

Fact: There is one-one correspondence between
(0,6 )-PLT’s and left Alt;o,d]-module.

Examples 1.4. (a) a € A, T, € End(A,+) is defined by
Tu(x) =0(x)a+d(x) Vo e A
In particular, Ty = 9, T} = o0 + 0.

b) If p(t) € Alt; 0, 4] is a monic polynomial and C,, is its
companion matrix then the PLT corresponding to R/ Rp
is the map T}, given by

T,: A" — A" v — o(v)C, + 6(v)

Fact: T a (0,6)-PLT on V. The map ¢, : R — End(V, +)

QOT(Z a;it’) = Z a;T", is a ring homomorphism.
i=0 i=0



Theorem 1.5. (a) f(T,)(1) = f(a).
(b) For f,g € R, (fg)(a) = f(T0)(g(a)).

3) (o, 0)-codes, definition and examples.

Proposition 1.6. Let f € R = Alt;0,0]| be a monic
polynomial of degree n. > 0. The map ¢ : R/Rf — A"

p(p+ Rf) =p(Ty)(1,0,...,0)

18 a bijection.

Definitions 1.7. Let f € A[t; 0, ] be a monic polynomial
of degree n.

A polynomial (f, o, d)-code C(t) is the left cyclic module
Rg/Rf where g is monic.

A (f,0,0) code C in A" is the image of a polynomial
(f,0,0)-code C(t) via the map described in Proposition 1.6.
Let g(t) .= go + git + -+ - + g,t" € R be a monic polynomial
(g- = 1). With the above notations we have

Theorem 1.8. (a) The code corresponding to Rg/Rf is

of dimension n — r where deg(f) =n and deg(g) = r.
(b) If v = (ag,ay,...,an—1) € C then Ty(v) € C.
(c) The rows of the matriz generating the code C' are

(TH*(g0,91, -, 950,...,0), 0<k<n—r—1
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Examples 1.9. In the examples hereunder A = F,» stands
for a finite field and 6 denotes the Frobenius map: 6(a) = a?,
for a € A.

1.Ifto=1d.,6=0, f=t"—1and f = gh
(b) gives the cyclicity condition for the code.

(¢) gives the generating matrix of a cyclic code.

2. f=t"—1e€ R=F,t;0] (0 =" Frobenius™)
(b) gives the #-cyclicity condition for the code.

(c) gives the generating matrix of a f-cyclic code.

3. f=t"—Xe R=F,[t;0] and f = gh.
(b) gives the #-constacyclicity condition for the code.
(¢) we get the standard generating matrix of a

f-constacyclic code.

4. R :=TF,[z]/(x?)[t; &L] where - denotes the usual

derivation. f(t) =t — 1 is a central polynomial.

Proposition 1.10. Assume there exists h,h' € R, monic
such that f = hg = gh' then C(t) = lannp/reh’. Moreover

the following statements are equivalent:
(’L) (Co, N Cn—l) € C,
(i) (Cig cit' ) () € R,

(iti) 31y e THH) =0,



2 B) Untwisting F,[¢; 0]

1) From factorization in [F[t; 8] to factorisation in F[z]

ft)=>" ait" € R:=TF,t;0] C S :=TF,[z][t; 0], where

O(x) = xP. We evaluate at x:

n

flz) =) aual! € Fylz]
1=0

where for i > 1; [i] : ]; =p +p T+ +1and [0] = 0.
S

_

Fylzl] = {350 izl }Fq{ I3
Theorem 2.1. f(t) ="  a;t' € R:=Tt;0].
1) for every b € F,, f(b) = >0, a;bll = fU(b).

2) For h(t) € R, f(t) € Rh(t) iff fl(z) € F,[z]hl(z).

Corollaire 2.2. f(t) € F[t; 0] is irrducible iff the
corresponding p-polynomial U does not have non trivial
factors in F,[xl].

2) Factoring

Let f(t) € R:=TF,[t; 0]

Step 1 Compute fU:if £U has no proper factor in F oz H] then
f(t) is irreducible in R.

Step 2 If f U(z) = q(z)h!(x) for some polynomial h(t) then
h(t) divides f(t) and write f(t) = g(¢t)h(t). Come back to
step 1 replacing f(t) by g(¢).
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Example 2.3. F; = {1,0,a,1+ a}, with a®> +a +1 = 0.
Consider f(t) = t*+ (a+ 1)t + a®** + (1 +a)t + 1 € Fy[t; ).
its associated polynomial is

P+ (a+1)z"+ (a+ )2’ + (1 4+ a)x + 1 € Fy[z]. We may

factorize it as:
(" +az'"+2"+(a+1) 2+ (a+1) 2"+ (a+1) 2+ +ax® +a+1) (2P +az+1)

This last factor is a [p]-polynomial that corresponds to

t2 +at + 1 € Fylt; 0]. Since 2% + ax + 1 is irreducible in
Fy[z], we have t* + at + 1 is irreducible as well in Fy[t; 6]. We
conclude that f(t) = (* +t+1)(t* +at + 1) is a

decomposition of f(t) in irreducible factors in Fy4[t; 6].

3 C) Exponents

Motivation. Coding theory (cyclic codes, linear recurring

sequences)

Lemme 3.1. f a nonzero divisor in a ring R. Suppose
fR=Rf and |R/Rf| < co. Let g € R such that
IR/Rg| < co andr,: R/Rf % R/Rf is1—1.

Je € N such that f©°—1¢€ Rg

Examples 3.2. ¢ = p", p prime.
1) R=F,z|, f(z) ==, g(z) € F,lz] s.t. g(0) # 0. We

obtain the classical exponent of g.



2) R=T,[t; 0] where 8(a) = a” for a € Fy; f(t) =t,
g(t) € R such that g(0) # 0. There exists e = e(g) such
that g(¢) [t“—1in R

3) R= Fyfal/()[t: &) f = %, = g(t) monie with
Rg + Rt? = R. There exists e such that g |t7° — 1.

Definition 3.3. G a group, o € Aut(G).
)geG. neN Ny(g)=0""g)o"*(g)--0(g)g.

2) ord,(g) is the smallest [ such that NV;(g) = 1 (if it exists).

Lemme 3.4. G a finite group, g € G
a) Nis(g) = o'(Ni(9)) Ni(g).-
b) if ord,(g) = I then (Ny(g) = 1< 1/s).
d) If o' = id. then o(Ni(g)) = gNi(g)g .

e) o' =id. then ord,(g)|l - ord(Ny(g)).

Proposition 3.5. g, g1, ...g9s monic polynomzials in
Fylt: 0] (g =p") such that g(0) # 0 # gi(0), for
1=1,...,s. Then

a) g(t)),t' — 1 e(g)|l.
b) glh = e(g)le(h).

c)ellgr, -, gsh) = le(gr), .., e(gs)].
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d) e(g(t)) = ordy(C,) where C, € GL,(F,) is the

companion matriz of g(t).
e) If o € F, is such that t — al,g(t) in F,[t:0] and g(t)
is irreducible in Fi[t; 0], then e(g) = ordy(a).
f) 0 can be extended to F,[t; 0] via 0(t) =
e(g(t)) = e(0(g(t)) for g(t) € Fy[t; 6].
g) h(t) =[g(t),0(g(t)), . ... 0" (g(t))]: then
e(h(t)) = e(g(t)) and 9( (t)) = h(t).

h) o € Fy s.t. ord(a) = p" — 1 then e(t —a) = (p— 1)n.

Corollaire 3.6. o € I, ¢ = p", 8 = Frobenius, 0" = 1d.
e(t —a)[n(p—1) and Gy(t) = [t — a | a € FJ]; then
Go(t) = t""=Y) — 1 is central in R = F[t; o].

Examples 3.7. 1. ¢e.(t —a) = ¢t — a) (right and left

exponents)

2. In Fy[t; 0] where F}y = {0, 1, a, a*} a* =1+a
e (t° + a*t? + at + a) # e (t® + a*t* + at + a).

3) More general settings.

a) Alt; o] where A is finite ring.
b) Alt; o, 0] where A is a finite ring.

"t" replaced by f(t) € R = Alt; o, 6] a monic polynomial
such that f(t)R = Rf(t).
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Let g(t) € Alt; o, 6] be a monic polynomial such that

Rg+Rf =R ef(g) =min{s|g(t)|, f*—1} (ef(g) exists,
thanks to Lemma 2).

Proposition 3.8. A a finite ring, f(t) € R = Alt; o, §]
monic of degree | such that f(t)R = Rf(t). Let g(t) € R
s.t. Rg+ Rf = R.

I.R(t—a)+Rf=R= et —a) =ord,(f(a))

2. g(t) monic of degree n, C, € M,(A) companion
matric N, (f(Cy)) =1 =es(g)|r i.e

r,o

ord,(f(Cy)) =r=3q(t) € R s.t. q(t)g(t) |, [ — 1L

4 Norms

In the sequel, we assume that o has finite order s.

Definition 4.1. (a) Let & be a field and let o € Aut(k).
Let p € R = k[t; 0] a monic polynomial of degree n and C,
its companion matrix. The norm of C' = C),, denoted by

N (C), is then defined by

N(C)=c"1C)o"2(0)- -0 (0)C.

(b) Two monic polynomials p and ¢ in R are similar (we
write p ~ q,) if we have R/Rp = R/Rq as left R-modules.
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For M € M, (k), denote by xy = det(xl,, — M) € k[z] the
characteristic polynomial of M.
Denote S the monoid of monic polynomials in R = klt; o).

We then have an application
S — klx]
P = ¢) = Xn(e,):
The application ¢ has the following properties.
Proposition 4.2. Let p,q € S. Then:
1. p(p) € k%]x].
2 (1) Xn(e,) = Xon(c)
3. If p~ q, then ¢ (p) = ¢ (q).

4. p(pq) = w(p)e(q).

Thank you !!



