PLT, Coding and

Factorisations in Ore extensions

 Saint Louis, October 2013Based on works with M.Boulagouaz and A. Cherchem

A)PLT and (σ, δ)-codes.
B) Untwisting $\mathbb{F}_{q}[t ; \theta]$.
C) Exponents
D) Norms

1 A)PLT and (σ, δ)-codes

1) Skew polynomial rings and skew polynomial maps.
A a ring, $\sigma \in \operatorname{End}(A), \delta$ a σ-derivation:

$$
\delta \in \operatorname{End}(A,+) \quad \delta(a b)=\sigma(a) \delta(b)+\delta(a) b, \forall a, b \in A
$$

$R:=A[t ; \sigma, \delta]=\left\{f(t)=\sum_{i=0}^{n} a_{i} t^{i} \mid a_{i} \in A\right\}$.
The product is based on:

$$
\forall a \in A, \quad t a=\sigma(a) t+\delta(a)
$$

Examples 1.1. 1) If $\sigma=i d$. and $\delta=0$ we get the usual polynomial ring $A[t]$.
2) $R=\mathbb{C}[t ; \sigma]$ where σ is the complex conjugation. If $x \in \mathbb{C}$ is such that $\sigma(x) x=1$ then

$$
t^{2}-1=(t+\sigma(x))(t-x)
$$

On the other hand $t^{2}+1$ is central and irreducible in R.
3) $R=\mathbb{Q}(x)\left[t ; i d ., \frac{d}{d x}\right]$. $t x-x t=1$; for any

$$
t^{2}=\left(t+(x+a)^{-1}\right)\left(t-(x+a)^{-1}\right) \text { for any } a \in \mathbb{Q}
$$

Definition 1.2. $a \in A, f(t) \in R=A[t ; \sigma, \delta]$ there exist $q(t) \in R, c \in A$ such that $f(t)=q(t)(t-a)+c$.
The (right) evaluation of $f(t)$ at a is the element c above. We write $c=f(a)$. We say a is a (right) root of $f(t)$ if $f(a)=0$. This defines the (σ, δ)-polynomial maps.

Examples: 1) For $a \in A, t^{2}(a)=\sigma(a) a+\delta(a)$.
2) If $\delta=0, t^{n}(a)=\sigma^{n-1}(a) \cdots \sigma(a) a$.
2) $\underline{(\sigma, \delta)-\mathrm{PLT}}$

Definition 1.3. V be a left A-module. $T: V,+\longrightarrow V,+$ such that:

$$
T(\alpha v)=\sigma(\alpha) T(v)+\delta(\alpha) v \quad \forall v \in V, \forall \alpha \in A
$$

T is called a (σ, δ) pseudo-linear map.
Fact: There is one-one correspondence between (σ, δ)-PLT's and left $A[t ; \sigma, \delta]$-module.

Examples 1.4. (a) $a \in A, T_{a} \in \operatorname{End}(A,+)$ is defined by

$$
T_{a}(x)=\sigma(x) a+\delta(x) \quad \forall x \in A
$$

In particular, $T_{0}=\delta, T_{1}=\sigma+\delta$.
b) If $p(t) \in A[t ; \sigma, \delta]$ is a monic polynomial and C_{p} is its companion matrix then the PLT corresponding to $R / R p$ is the map T_{p} given by

$$
T_{p}: A^{n} \longrightarrow A^{n}: \underline{v} \mapsto \sigma(\underline{v}) C_{p}+\delta(\underline{v})
$$

Fact: T a (σ, δ)-PLT on V. The map $\varphi_{T}: R \longrightarrow \operatorname{End}(V,+)$

$$
\varphi_{T}\left(\sum_{i=0}^{n} a_{i} t^{i}\right)=\sum_{i=0}^{n} a_{i} T^{i}, \quad \text { is a ring homomorphism. }
$$

Theorem 1.5. (a) $f\left(T_{a}\right)(1)=f(a)$.
(b) For $f, g \in R,(f g)(a)=f\left(T_{a}\right)(g(a))$.
3) (σ, δ)-codes, definition and examples.

Proposition 1.6. Let $f \in R=A[t ; \sigma, \delta]$ be a monic polynomial of degree $n>0$. The $\operatorname{map} \varphi: R / R f \longrightarrow A^{n}$

$$
\varphi(p+R f)=p\left(T_{f}\right)(1,0, \ldots, 0)
$$

is a bijection.

Definitions 1.7. Let $f \in A[t ; \sigma, \delta]$ be a monic polynomial of degree n.
A polynomial (f, σ, δ)-code $C(t)$ is the left cyclic module $R g / R f$ where g is monic.
A (f, σ, δ) code C in A^{n} is the image of a polynomial (f, σ, δ)-code $C(t)$ via the map described in Proposition 1.6. Let $g(t):=g_{0}+g_{1} t+\cdots+g_{r} t^{r} \in R$ be a monic polynomial $\left(g_{r}=1\right)$. With the above notations we have

Theorem 1.8. (a) The code corresponding to $R g / R f$ is of dimension $n-r$ where $\operatorname{deg}(f)=n$ and $\operatorname{deg}(g)=r$.
(b) If $v:=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C$ then $T_{f}(v) \in C$.
(c) The rows of the matrix generating the code C are

$$
\left(T_{f}\right)^{k}\left(g_{0}, g_{1}, \ldots, g_{r}, 0, \ldots, 0\right), \quad 0 \leq k \leq n-r-1
$$

Examples 1.9. In the examples hereunder $A=\mathbb{F}_{p^{n}}$ stands for a finite field and θ denotes the Frobenius map: $\theta(a)=a^{p}$, for $a \in A$.

1. If $\sigma=I d$., $\delta=0, f=t^{n}-1$ and $f=g h$
(b) gives the cyclicity condition for the code.
(c) gives the generating matrix of a cyclic code.
2. $f=t^{n}-1 \in R=\mathbb{F}_{q}[t ; \theta](\theta="$ Frobenius" $)$
(b) gives the θ-cyclicity condition for the code.
(c) gives the generating matrix of a θ-cyclic code.
3. $f=t^{n}-\lambda \in R=\mathbb{F}_{q}[t ; \theta]$ and $f=g h$.
(b) gives the θ-constacyclicity condition for the code.
(c) we get the standard generating matrix of a θ-constacyclic code.
4. $R:=\mathbb{F}_{p}[x] /\left(x^{p}\right)\left[t ; \frac{d}{d x}\right]$ where $\frac{d}{d x}$ denotes the usual derivation. $f(t)=t^{p}-1$ is a central polynomial.

Proposition 1.10. Assume there exists $h, h^{\prime} \in R$, monic such that $f=h g=g h^{\prime}$ then $C(t)=l a n n_{R / R f} h^{\prime}$. Moreover the following statements are equivalent:
(i) $\left(c_{0}, \ldots, c_{n-1}\right) \in C$,
(ii) $\left(\sum_{i=0}^{n-1} c_{i} t^{i}\right) h^{\prime}(t) \in R f$,
(iii) $\sum_{i=0}^{n-1} c_{i} T_{f}^{i}\left(\underline{h^{\prime}}\right)=\underline{0}$,

2 B) Untwisting $\mathbb{F}_{q}[t ; \theta]$

1) From factorization in $\mathbb{F}_{q}[t ; \theta]$ to factorisation in $\mathbb{F}_{q}[x]$
$f(t)=\sum_{i=0}^{n} a_{i} t^{i} \in R:=\mathbb{F}_{q}[t ; \theta] \subset S:=\mathbb{F}_{q}[x][t ; \theta]$, where $\theta(x)=x^{p}$. We evaluate at x :

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{[i]} \in \mathbb{F}_{q}[x]
$$

where for $i \geq 1 ;[i]:=\frac{p^{i}-1}{p-1}=p^{i-1}+p^{i-2}+\cdots+1$ and $[0]=0$. $\mathbb{F}_{q}\left[x^{[]}\right]:=\left\{\sum_{i \geq 0} \alpha_{i} x^{[i]} \in \mathbb{F}_{q}[x]\right\}$

Theorem 2.1. $f(t)=\sum_{i=0}^{n} a_{i} t^{i} \in R:=\mathbb{F}_{q}[t ; \theta]$.

1) for every $b \in \mathbb{F}_{q}, f(b)=\sum_{i=0}^{n} a_{i} b^{[i]}=f^{\square}(b)$.
2) For $h(t) \in R, f(t) \in R h(t)$ iff $f^{[]}(x) \in \mathbb{F}_{q}[x] h^{[]}(x)$.

Corollaire 2.2. $f(t) \in \mathbb{F}_{q}[t ; \theta]$ is irrducible iff the corresponding p-polynomial $f^{\square]}$ does not have non trivial factors in $\mathbb{F}_{q}\left[x^{[\square]}\right.$.
2) Factoring

Let $f(t) \in R:=\mathbb{F}_{q}[t ; \theta]$.
Step 1 Compute $f^{[]}$; if $f^{[]}$has no proper factor in $\mathbb{F}_{q}\left[x^{[\square]}\right.$ then $f(t)$ is irreducible in R.
 $h(t)$ divides $f(t)$ and write $f(t)=g(t) h(t)$. Come back to step 1 replacing $f(t)$ by $g(t)$.

Example 2.3. $\mathbb{F}_{4}=\{1,0, a, 1+a\}$, with $a^{2}+a+1=0$.
Consider $f(t)=t^{4}+(a+1) t^{3}+a^{2} t^{2}+(1+a) t+1 \in \mathbb{F}_{4}[t ; \theta]$.
its associated polynomial is
$x^{15}+(a+1) x^{7}+(a+1) x^{3}+(1+a) x+1 \in \mathbb{F}_{4}[x]$. We may
factorize it as:
$\left(x^{12}+a x^{10}+x^{9}+(a+1) x^{8}+(a+1) x^{5}+(a+1) x^{4}+x^{3}+a x^{2}+x+1\right)\left(x^{3}+a x+1\right)$
This last factor is a $[p]$-polynomial that corresponds to $t^{2}+a t+1 \in \mathbb{F}_{4}[t ; \theta]$. Since $x^{3}+a x+1$ is irreducible in $\mathbb{F}_{4}[x]$, we have $t^{2}+a t+1$ is irreducible as well in $\mathbb{F}_{4}[t ; \theta]$. We conclude that $f(t)=\left(t^{2}+t+1\right)\left(t^{2}+a t+1\right)$ is a decomposition of $f(t)$ in irreducible factors in $\mathbb{F}_{4}[t ; \theta]$.

3 C) Exponents

Motivation. Coding theory (cyclic codes, linear recurring sequences)

Lemme 3.1. f a nonzero divisor in a ring R. Suppose $f R=R f$ and $|R / R f|<\infty$. Let $g \in R$ such that $|R / R g|<\infty$ and $r_{g}: R / R f \xrightarrow{. g} R / R f$ is $1-1$.
$\exists e \in \mathbb{N}$ such that $f^{e}-1 \in R g$

Examples 3.2. $q=p^{n}$, p prime.

1) $R=\mathbb{F}_{q}[x], f(x)=x, g(x) \in \mathbb{F}_{q}[x]$ s.t. $g(0) \neq 0$. We obtain the classical exponent of g.
2) $R=\mathbb{F}_{q}[t ; \theta]$ where $\theta(a)=a^{p}$ for $a \in \mathbb{F}_{q} ; f(t)=t$, $g(t) \in R$ such that $g(0) \neq 0$. There exists $e=e(g)$ such that $g(t) \mid t^{e}-1$ in R
3) $R=F_{q}[x] /\left(x^{p}\right)\left[t ; \frac{d}{d x}\right] ; f=t^{p} ; g=g(t)$ monic with $R g+R t^{p}=R$. There exists e such that $g \mid t^{p e}-1$.

Definition 3.3. G a group, $\sigma \in \operatorname{Aut}(G)$.

1) $g \in G, n \in \mathbb{N} \quad N_{n}(g)=\sigma^{n-1}(g) \sigma^{n-2}(g) \cdots \sigma(g) g$.
2) $\operatorname{ord}_{\sigma}(g)$ is the smallest l such that $N_{l}(g)=1$ (if it exists).

Lemme 3.4. G a finite group, $g \in G$
a) $N_{l+s}(g)=\sigma^{l}\left(N_{s}(g)\right) N_{l}(g)$.
b) if $\operatorname{ord}_{\sigma}(g)=l$ then $\left(N_{s}(g)=1 \Leftrightarrow l / s\right)$.
d) If $\sigma^{l}=i d$. then $\sigma\left(N_{l}(g)\right)=g N_{l}(g) g^{-1}$.
e) $\sigma^{l}=i d$. then $\operatorname{ord}_{\sigma}(g) \mid l \cdot \operatorname{ord}\left(N_{l}(g)\right)$.

Proposition 3.5. $g, g_{1}, \ldots g_{s}$ monic polynomials in $F_{q}[t ; \theta]\left(q=p^{n}\right)$ such that $g(0) \neq 0 \neq g_{i}(0)$, for $i=1, \ldots, s$. Then
a) $\left.g(t)\right|_{r} t^{l}-1 \Leftrightarrow e(g) \mid l$.
b) $\left.g\right|_{r} h \Rightarrow e(g) \mid e(h)$.
c) $e\left(\left[g_{1}, \ldots, g_{s}\right]_{l}\right)=\left[e\left(g_{1}\right), \ldots, e\left(g_{s}\right)\right]$.
d) $e(g(t))=\operatorname{ord}_{\theta}\left(C_{g}\right)$ where $C_{g} \in G L_{r}\left(F_{q}\right)$ is the companion matrix of $g(t)$.
e) If $\alpha \in{\overline{F_{q}}}^{*}$ is such that $t-\left.\alpha\right|_{r} g(t)$ in $\bar{F}_{q}[t ; \theta]$ and $g(t)$ is irreducible in $F_{q}[t ; \theta]$, then $e(g)=\operatorname{ord}_{\theta}(\alpha)$.
f) θ can be extended to $F_{q}[t ; \theta]$ via $\theta(t)=t$ $e(g(t))=e\left(\theta(g(t))\right.$ for $g(t) \in F_{q}[t ; \theta]$.
g) $h(t)=\left[g(t), \theta(g(t)), \ldots, \theta^{n-1}(g(t))\right]_{l}$ then $e(h(t))=e(g(t))$ and $\theta(h(t))=h(t)$.
h) $\alpha \in F_{p^{n}}^{*}$ s.t. $\operatorname{ord}(\alpha)=p^{n}-1$ then $e(t-\alpha)=(p-1) n$.

Corollaire 3.6. $\alpha \in F_{q}, q=p^{n}, \theta=$ Frobenius, $\theta^{n}=i d$. $e(t-\alpha) \mid n(p-1)$ and $G_{0}(t):=\left[t-\alpha \mid \alpha \in F_{q}^{*}\right]_{l}$ then $G_{0}(t)=t^{n(p-1)}-1$ is central in $R=\mathbb{F}_{q}[t ; \sigma]$.

Examples 3.7. 1. $e_{r}(t-\alpha)=e_{l}(t-\alpha)$ (right and left exponents)
2. In $F_{4}[t ; \theta]$ where $F_{4}=\left\{0,1, a, a^{2}\right\} a^{2}=1+a$ $e_{r}\left(t^{3}+a^{2} t^{2}+a t+a\right) \neq e_{l}\left(t^{3}+a^{2} t^{2}+a t+a\right)$.
3) More general settings.
a) $A[t ; \sigma]$ where A is finite ring.
b) $A[t ; \sigma, \delta]$ where A is a finite ring.
" t " replaced by $f(t) \in R=A[t ; \sigma, \delta]$ a monic polynomial such that $f(t) R=R f(t)$.

Let $g(t) \in A[t ; \sigma, \delta]$ be a monic polynomial such that $R g+R f=R \quad e_{f}(g)=\min \left\{s|g(t)|_{r} f^{s}-1\right\}\left(e_{f}(g)\right.$ exists, thanks to Lemma 2).

Proposition 3.8. A a finite ring, $f(t) \in R=A[t ; \sigma, \delta]$ monic of degree l such that $f(t) R=R f(t)$. Let $g(t) \in R$ s.t. $R g+R f=R$.

$$
\text { 1. } R(t-\alpha)+R f=R \Rightarrow e_{f}(t-\alpha)=\operatorname{ord}_{\sigma^{l}}(f(\alpha))
$$

2. $g(t)$ monic of degree $n, C_{g} \in M_{n}(A)$ companion matrix $\quad N_{r, \sigma^{l}}\left(f\left(C_{g}\right)\right)=I_{l} \Rightarrow e_{f}(g) \mid r \quad$ i.e. $\operatorname{ord}_{\sigma^{l}}\left(f\left(C_{g}\right)\right)=r \Rightarrow \exists q(t) \in R$ s.t. $\left.q(t) g(t)\right|_{r} f^{r}-1$.

4 Norms

In the sequel, we assume that σ has finite order s.

Definition 4.1. (a) Let k be a field and let $\sigma \in \operatorname{Aut}(k)$.
Let $p \in R:=k[t ; \sigma]$ a monic polynomial of degree n and C_{p} its companion matrix. The norm of $C=C_{p}$, denoted by $N(C)$, is then defined by

$$
N(C)=\sigma^{s-1}(C) \sigma^{s-2}(C) \cdots \sigma(C) C
$$

(b) Two monic polynomials p and q in R are similar (we write $p \underset{\sigma}{\sim} q$,) if we have $R / R p \cong R / R q$ as left R-modules.

For $M \in M_{n}(k)$, denote by $\chi_{M}=\operatorname{det}\left(x I_{n}-M\right) \in k[x]$ the characteristic polynomial of M.
Denote S the monoid of monic polynomials in $R=k[t ; \sigma]$. We then have an application

$$
\begin{aligned}
& S \rightarrow k[x] \\
& p \rightarrow \varphi(p)=\chi_{N\left(C_{p}\right)} .
\end{aligned}
$$

The application φ has the following properties.
Proposition 4.2. Let $p, q \in S$. Then:

1. $\varphi(p) \in k^{\sigma}[x]$.
2. (1) $\chi_{N\left(C_{p}\right)}=\chi_{\sigma\left(N\left(C_{p}\right)\right)}$
3. If $p \underset{\sigma}{\sim} q$, then $\varphi(p)=\varphi(q)$.
4. $\varphi(p q)=\varphi(p) \varphi(q)$.

Thank you !!

