PLT, Coding and Factorisations in Ore extensions Saint Louis, October 2013

Based on works with M.Boulagouaz and A. Cherchem

- A)**PLT and** (σ, δ) -codes.
- B) Untwisting $\mathbb{F}_q[t;\theta]$.
- C)**Exponents**
- D) Norms

•

•

1 A)PLT and (σ, δ) -codes

- 1) Skew polynomial rings and skew polynomial maps.
- A a ring, $\sigma \in End(A)$, δ a σ -derivation:

$$\delta \in End(A,+) \quad \delta(ab) = \sigma(a)\delta(b) + \delta(a)b, \forall a, b \in A.$$

 $R := A[t; \sigma, \delta] = \{ f(t) = \sum_{i=0}^{n} a_i t^i \mid a_i \in A \}.$ The product is based on:

$$\forall a \in A, \quad ta = \sigma(a)t + \delta(a).$$

- **Examples 1.1.** 1) If $\sigma = id$. and $\delta = 0$ we get the usual polynomial ring A[t].
 - 2) $R = \mathbb{C}[t; \sigma]$ where σ is the complex conjugation. If $x \in \mathbb{C}$ is such that $\sigma(x)x = 1$ then

$$t^{2} - 1 = (t + \sigma(x))(t - x).$$

On the other hand $t^2 + 1$ is central and irreducible in R.

3)
$$R = \mathbb{Q}(x)[t; id_{\cdot}, \frac{d}{dx}]$$
. $tx - xt = 1$; for any $t^2 = (t + (x + a)^{-1})(t - (x + a)^{-1})$ for any $a \in \mathbb{Q}$.

Definition 1.2. $a \in A$, $f(t) \in R = A[t; \sigma, \delta]$ there exist $q(t) \in R, c \in A$ such that f(t) = q(t)(t - a) + c. The (right) evaluation of f(t) at a is the element c above. We

write c = f(a). We say a is a (right) root of f(t) if f(a) = 0. This defines the (σ, δ) -polynomial maps.

Examples: 1) For
$$a \in A$$
, $t^2(a) = \sigma(a)a + \delta(a)$
2) If $\delta = 0$, $t^n(a) = \sigma^{n-1}(a) \cdots \sigma(a)a$.
2) (σ, δ) -PLT

Definition 1.3. V be a left A-module. $T: V, + \longrightarrow V, +$ such that:

$$T(\alpha v) = \sigma(\alpha)T(v) + \delta(\alpha)v \qquad \forall v \in V, \ \forall \alpha \in A$$

T is called a (σ, δ) pseudo-linear map.

Fact: There is one-one correspondence between (σ, δ) -PLT's and left $A[t; \sigma, \delta]$ -module.

Examples 1.4. (a) $a \in A, T_a \in End(A, +)$ is defined by

$$T_a(x) = \sigma(x)a + \delta(x) \quad \forall x \in A.$$

In particular, $T_0 = \delta$, $T_1 = \sigma + \delta$.

b) If $p(t) \in A[t; \sigma, \delta]$ is a monic polynomial and C_p is its companion matrix then the PLT corresponding to R/Rpis the map T_p given by

$$T_p: A^n \longrightarrow A^n: \underline{v} \mapsto \sigma(\underline{v})C_p + \delta(\underline{v})$$

Fact: T a (σ, δ) -PLT on V. The map $\varphi_T : R \longrightarrow End(V, +)$

$$\varphi_T(\sum_{i=0}^n a_i t^i) = \sum_{i=0}^n a_i T^i, \quad \text{is a ring homomorphism.}$$

Theorem 1.5. (a) $f(T_a)(1) = f(a)$. (b) For $f, g \in R$, $(fg)(a) = f(T_a)(g(a))$.

3) (σ, δ) -codes, definition and examples.

Proposition 1.6. Let $f \in R = A[t; \sigma, \delta]$ be a monic polynomial of degree n > 0. The map $\varphi : R/Rf \longrightarrow A^n$

$$\varphi(p+Rf) = p(T_f)(1,0,\ldots,0)$$

is a bijection.

Definitions 1.7. Let $f \in A[t; \sigma, \delta]$ be a monic polynomial of degree n.

A polynomial (f, σ, δ) -code C(t) is the left cyclic module Rg/Rf where g is monic.

A (f, σ, δ) code C in A^n is the image of a polynomial (f, σ, δ) -code C(t) via the map described in Proposition 1.6. Let $g(t) := g_0 + g_1 t + \cdots + g_r t^r \in R$ be a monic polynomial $(g_r = 1)$. With the above notations we have

Theorem 1.8. (a) The code corresponding to Rg/Rf is of dimension n - r where $\deg(f) = n$ and $\deg(g) = r$.

(b) If
$$v := (a_0, a_1, \dots, a_{n-1}) \in C$$
 then $T_f(v) \in C$.

(c) The rows of the matrix generating the code C are

$$(T_f)^k(g_0, g_1, \dots, g_r, 0, \dots, 0), \quad 0 \le k \le n - r - 1$$

Examples 1.9. In the examples hereunder $A = \mathbb{F}_{p^n}$ stands for a finite field and θ denotes the Frobenius map: $\theta(a) = a^p$, for $a \in A$.

- If σ = Id., δ = 0, f = tⁿ 1 and f = gh
 (b) gives the cyclicity condition for the code.
 (c) gives the generating matrix of a cyclic code.
- 2. $f = t^n 1 \in R = \mathbb{F}_q[t; \theta] \ (\theta = "Frobenius")$ (b) gives the θ -cyclicity condition for the code. (c) gives the generating matrix of a θ -cyclic code.
- 3. f = tⁿ λ ∈ R = F_q[t; θ] and f = gh.
 (b) gives the θ-constacyclicity condition for the code.
 (c) we get the standard generating matrix of a θ-constacyclic code.
- 4. $R := \mathbb{F}_p[x]/(x^p)[t; \frac{d}{dx}]$ where $\frac{d}{dx}$ denotes the usual derivation. $f(t) = t^p 1$ is a central polynomial.

Proposition 1.10. Assume there exists $h, h' \in R$, monic such that f = hg = gh' then $C(t) = lann_{R/Rf}h'$. Moreover the following statements are equivalent:

- (*i*) $(c_0, \ldots, c_{n-1}) \in C$,
- (*ii*) $(\sum_{i=0}^{n-1} c_i t^i) h'(t) \in Rf$,

(*iii*)
$$\sum_{i=0}^{n-1} c_i T_f^i(\underline{h'}) = \underline{0},$$

2 B) Untwisting $\mathbb{F}_q[t; \theta]$

1) From factorization in $\mathbb{F}_q[t;\theta]$ to factorisation in $\mathbb{F}_q[x]$ $f(t) = \sum_{i=0}^n a_i t^i \in R := \mathbb{F}_q[t;\theta] \subset S := \mathbb{F}_q[x][t;\theta]$, where $\theta(x) = x^p$. We evaluate at x:

$$f(x) = \sum_{i=0}^{n} a_i x^{[i]} \in \mathbb{F}_q[x]$$

where for $i \ge 1$; $[i] := \frac{p^{i-1}}{p-1} = p^{i-1} + p^{i-2} + \dots + 1$ and [0] = 0. $\mathbb{F}_q[x^{[i]}] := \{\sum_{i\ge 0} \alpha_i x^{[i]} \in \mathbb{F}_q[x]\}$

Theorem 2.1.
$$f(t) = \sum_{i=0}^{n} a_i t^i \in R := \mathbb{F}_q[t; \theta].$$

1) for every $b \in \mathbb{F}_q$, $f(b) = \sum_{i=0}^{n} a_i b^{[i]} = f^{[]}(b).$
2) For $h(t) \in R$, $f(t) \in Rh(t)$ iff $f^{[]}(x) \in \mathbb{F}_q[x]h^{[]}(x)$

Corollaire 2.2. $f(t) \in \mathbb{F}_q[t; \theta]$ is irrducible iff the corresponding p-polynomial $f^{[]}$ does not have non trivial factors in $\mathbb{F}_q[x^{[]}]$.

2) <u>Factoring</u> Let $f(t) \in R := \mathbb{F}_q[t; \theta]$. <u>Step 1</u> Compute $f^{[]}$; if $f^{[]}$ has no proper factor in $\mathbb{F}_q[x^{[]}]$ then f(t) is irreducible in R. <u>Step 2</u> If $f^{[]}(x) = q(x)h^{[]}(x)$ for some polynomial h(t) then h(t) divides f(t) and write f(t) = g(t)h(t). Come back to step 1 replacing f(t) by g(t). **Example 2.3.** $\mathbb{F}_4 = \{1, 0, a, 1+a\}$, with $a^2 + a + 1 = 0$. Consider $f(t) = t^4 + (a+1)t^3 + a^2t^2 + (1+a)t + 1 \in \mathbb{F}_4[t;\theta]$. its associated polynomial is $x^{15} + (a+1)x^7 + (a+1)x^3 + (1+a)x + 1 \in \mathbb{F}_4[x]$. We may factorize it as:

$$(x^{12} + ax^{10} + x^9 + (a+1)x^8 + (a+1)x^5 + (a+1)x^4 + x^3 + ax^2 + x + 1)(x^3 + ax + 1)(x^3 +$$

This last factor is a [p]-polynomial that corresponds to $t^2 + at + 1 \in \mathbb{F}_4[t; \theta]$. Since $x^3 + ax + 1$ is irreducible in $\mathbb{F}_4[x]$, we have $t^2 + at + 1$ is irreducible as well in $\mathbb{F}_4[t; \theta]$. We conclude that $f(t) = (t^2 + t + 1)(t^2 + at + 1)$ is a decomposition of f(t) in irreducible factors in $\mathbb{F}_4[t; \theta]$.

3 C) Exponents

Motivation. Coding theory (cyclic codes, linear recurring sequences)

Lemme 3.1. f a nonzero divisor in a ring R. Suppose fR = Rf and $|R/Rf| < \infty$. Let $g \in R$ such that $|R/Rg| < \infty$ and $r_g : R/Rf \xrightarrow{\cdot g} R/Rf$ is 1 - 1.

 $\exists e \in \mathbb{N}$ such that $f^e - 1 \in Rg$

Examples 3.2. $q = p^n$, p prime.

1) $R = \mathbb{F}_q[x], f(x) = x, g(x) \in \mathbb{F}_q[x]$ s.t. $g(0) \neq 0$. We obtain the classical exponent of g.

- 2) $R = \mathbb{F}_q[t; \theta]$ where $\theta(a) = a^p$ for $a \in \mathbb{F}_q$; f(t) = t, $g(t) \in R$ such that $g(0) \neq 0$. There exists e = e(g) such that $g(t) \mid t^e - 1$ in R
- 3) $R = F_q[x]/(x^p)[t; \frac{d}{dx}]; f = t^p; g = g(t)$ monic with $Rg + Rt^p = R$. There exists e such that $g \mid t^{pe} 1$.

Definition 3.3. G a group, $\sigma \in Aut(G)$.

- 1) $g \in G, n \in \mathbb{N}$ $N_n(g) = \sigma^{n-1}(g)\sigma^{n-2}(g)\cdots\sigma(g)g.$
- 2) $ord_{\sigma}(g)$ is the smallest l such that $N_l(g) = 1$ (if it exists).

Lemme 3.4. G a finite group, $g \in G$

a)
$$N_{l+s}(g) = \sigma^{l}(N_{s}(g))N_{l}(g).$$

b) if $ord_{\sigma}(g) = l$ then $(N_{s}(g) = 1 \Leftrightarrow l/s).$
d) If $\sigma^{l} = id.$ then $\sigma(N_{l}(g)) = gN_{l}(g)g^{-1}.$
e) $\sigma^{l} = id.$ then $ord_{\sigma}(g)|l \cdot ord(N_{l}(g)).$

Proposition 3.5. g, g_1, \ldots, g_s monic polynomials in $F_q[t; \theta] \ (q = p^n)$ such that $g(0) \neq 0 \neq g_i(0)$, for $i = 1, \ldots, s$. Then a) $g(t)|_r t^l - 1 \Leftrightarrow e(g)|l$. b) $g|_r h \Rightarrow e(g)|e(h)$. c) $e([g_1, \ldots, g_s]_l) = [e(g_1), \ldots, e(g_s)]$.

- d) $e(g(t)) = ord_{\theta}(C_g)$ where $C_g \in GL_r(F_q)$ is the companion matrix of g(t).
- e) If $\alpha \in \overline{F_q}^*$ is such that $t \alpha|_r g(t)$ in $\overline{F_q}[t; \theta]$ and g(t) is irreducible in $F_q[t; \theta]$, then $e(g) = ord_{\theta}(\alpha)$.

f)
$$\theta$$
 can be extended to $F_q[t; \theta]$ via $\theta(t) = t$
 $e(g(t)) = e(\theta(g(t)) \text{ for } g(t) \in F_q[t; \theta].$

g) $h(t) = [g(t), \theta(g(t)), \dots, \theta^{n-1}(g(t))]_l$ then e(h(t)) = e(g(t)) and $\theta(h(t)) = h(t).$

h) $\alpha \in F_{p^n}^*$ s.t. $ord(\alpha) = p^n - 1$ then $e(t - \alpha) = (p - 1)n$.

Corollaire 3.6. $\alpha \in F_q$, $q = p^n$, $\theta = Frobenius$, $\theta^n = id$. $e(t - \alpha) \mid n(p - 1) \text{ and } G_0(t) := [t - \alpha \mid \alpha \in F_q^*]_l$ then $G_0(t) = t^{n(p-1)} - 1$ is central in $R = \mathbb{F}_q[t; \sigma]$.

- **Examples 3.7.** 1. $e_r(t \alpha) = e_l(t \alpha)$ (right and left exponents)
 - 2. In $F_4[t; \theta]$ where $F_4 = \{0, 1, a, a^2\} a^2 = 1 + a$ $e_r(t^3 + a^2t^2 + at + a) \neq e_l(t^3 + a^2t^2 + at + a).$
- 3) More general settings.
- a) $A[t;\sigma]$ where A is finite ring.
- b) $A[t;\sigma, \delta]$ where A is a finite ring.

"t" replaced by $f(t) \in R = A[t; \sigma, \delta]$ a monic polynomial such that f(t)R = Rf(t).

Let $g(t) \in A[t; \sigma, \delta]$ be a monic polynomial such that $Rg + Rf = R \quad e_f(g) = min\{s|g(t)|_r \ f^s - 1\} \ (e_f(g) \text{ exists},$ thanks to Lemma 2).

Proposition 3.8. A a finite ring, $f(t) \in R = A[t; \sigma, \delta]$ monic of degree l such that f(t)R = Rf(t). Let $g(t) \in R$ s.t. Rg + Rf = R.

1.
$$R(t - \alpha) + Rf = R \Rightarrow e_f(t - \alpha) = ord_{\sigma^l}(f(\alpha))$$

2. g(t) monic of degree $n, C_g \in M_n(A)$ companion matrix $N_{r,\sigma^l}(f(C_g)) = I_l \Rightarrow e_f(g) \mid r$ i.e. $ord_{\sigma^l}(f(C_g)) = r \Rightarrow \exists q(t) \in R \text{ s.t. } q(t)g(t) \mid_r f^r - 1.$

4 Norms

In the sequel, we assume that σ has finite order s.

Definition 4.1. (a) Let k be a field and let $\sigma \in Aut(k)$. Let $p \in R := k [t; \sigma]$ a monic polynomial of degree n and C_p its companion matrix. The norm of $C = C_p$, denoted by N(C), is then defined by

$$N(C) = \sigma^{s-1}(C) \sigma^{s-2}(C) \cdots \sigma(C) C.$$

(b) Two monic polynomials p and q in R are similar (we write $p \sim_{\sigma} q$,) if we have $R/Rp \cong R/Rq$ as left R-modules.

For $M \in M_n(k)$, denote by $\chi_M = \det(xI_n - M) \in k[x]$ the characteristic polynomial of M.

Denote S the monoid of monic polynomials in $R = k[t; \sigma]$. We then have an application

$$S \rightarrow k[x]$$

$$p \rightarrow \varphi(p) = \chi_{N(C_p)}.$$

The application φ has the following properties.

Proposition 4.2. Let $p, q \in S$. Then:

1. $\varphi(p) \in k^{\sigma}[x]$. 2. (1) $\chi_{N(C_p)} = \chi_{\sigma(N(C_p))}$ 3. If $p \sim_{\sigma} q$, then $\varphi(p) = \varphi(q)$. 4. $\varphi(pq) = \varphi(p)\varphi(q)$.

Thank you !!

12